標題:
4題二次函數點做(20點)..........
發問:
對於下列各二次函數: (a)求函數的極值; (b)求並圖像的 (i)開口方向; (ii)頂點; (iii)對稱軸。 1.y=(x+2)(x-3) 2.y=2(2-x)(x+2)-4x 3.y=-(x-1)(2x+3)-5x 4.y=(x+1)^2+2(x-1) ......................... 步驟愈詳細愈好,包括小步驟,唔怕你煩,只怕你簡 最好先以數學式做下去,否則會較混亂,多謝各位!!!
最佳解答:
此文章來自奇摩知識+如有不便請留言告知
對於下列各二次函數: (a)求函數的極值; (b)求並圖像的 (i)開口方向; (ii)頂點; (iii)對稱軸。 1. y = (x + 2)(x - 3) = (x)(x - 3) + (2)(x - 3) = x^2 - 3x + 2x - 6 = x^2 - x - 6 = x^2 - x + 1/4 - 1/4 - 6 = (x - 1/2)^2 - 1/4 - 6 = (x - 1/2)^2 - 25/4 極值 = -25/4 開口向上 頂點 = (1/2, -25/4) 對稱軸 : x = 1/2 -------------------------------------------------------------- 2. y = 2(2 - x)(x + 2) - 4x = (4 - 2x)(x + 2) - 4x = (4)(x + 2) + (-2x)(x + 2) - 4x = 4x + 8 - 2x^2 - 4x - 4x = -2x^2 - 4x + 8 = -2(x^2 + 2x) + 8 = -2(x^2 + 2x + 1) + 2 + 8 = -2(x + 1) + 10 = -2 [x - (-1)] + 10 極值 = 10 開口向下 頂點 = (-1, 10) 對稱軸 : x = -1 -------------------------------------------------------------- 3. y = -(x - 1)(2x + 3) - 5x -------------------------------------------------------------- 4. y = (x + 1)^2 + 2(x - 1) 唔幫你做啦, 反正條條都係咁做, 最主要化做 y = a [x - h] + k 咁樣 極值 = k a > 0, 開口向上 a
其他解答:
1a) 拆括號 y=x^2-x-6 completing square y=(x-1/2)^2-25/4 min.= -25/4 1b)upward vertex=(1/2,-25/4) axis of symmetry: x=1/2 2a)拆括號 y=-2x^2-4x+8 completing square y=-2(x+1)^2+10 max.= 10 2b)downward vertex=(-1,10) axis of symmetry: x=-1 3a)拆括號 y=-2x^2-6x+3 completing square y=-2(x+3/2)^2+30/4 max.=30/4 3b)downward vertex=(-3/2,30/4) axis of symmetry: x=-3/2 4a)拆括號 y=x^2+4x-1 completing square y=(x+2)^2-5 upward vertex=(-2,-5) axis of symmetry: x=-2
留言列表