標題:
急~急~急~數學恆等多項式
發問:
此文章來自奇摩知識+如有不便請留言告知
若P(x-1)(x-2)+Q(x-2)(x+1)+R(x+1)(x-1)≡4x^2 - 8x+6 求P,Q,R.... 另外 A(x+1)^2 + B(x+1)(x-2)+C(x-2)^2≡15x-12 求A,B,C 最後 (A) 若P(x+1)(x+2)+Q(x+2)(x+3)+R(x+3)(x+4)≡x^2+8x+14 求p,q,r (b)由此.解 -2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=3x^2+20x+29 我計左好內都計唔掂啊.. 究竟點計.___.
最佳解答:
Q.1 P(x-1)(x-2)+Q(x-2)(x+1)+R(x+1)(x-1)≡4x2-8x+6 P(x2-3x+2)+Q(x2-x-2)+R(x2-1)≡4x2-8x+6 (P+Q+R)x2+(-3P-Q)x+(2P-2Q-R)≡4x2-8x+6 So, P+Q+R = 4 ................. (a) -3P-Q = -8 .................. (b) 2P-2Q-R = 6 ............... (c) (a)+(c): 3P-Q = 10 ................ (d) (d)-(b): 6P = 18, i.e. P = 3. Put into (d): Q = 3P-10 = -1. Put into (a): R = 4-P-Q = 2. 2007-02-01 21:20:46 補充: Q.2A(x 1)2 B(x 1)(x-2) C(x-2)2≡15x-12(A B C)x2 (2A-B-4C)x (A-2B-4C)≡15x-12So, A B C = 0 ................. (a)2A-B-4C = 15 .............. (b)A-2B-4C = -12 ............. (c) 2007-02-01 21:20:56 補充: 4(a) (b): 6A 3B = 152A B = 5 ................ (d)4(a) (c): 5A 2B = -12 ........... (e)(e)-2(d): A = -22.Put into (d): B = 5-2A = 49.Put into (a): C = -A-B = -27. 2007-02-01 21:23:50 補充: It seems there's some problem with displaying the + sign.The missing signs in my Q.2 answer are +. 2007-02-01 21:31:15 補充: Q.3(a):P(x+1)(x+2)+Q(x+2)(x+3)+R(x+3)(x+4)≡x2+8x+14(P+Q+R)x2+(3P+5Q+7R)x+(2P+6Q+12R)≡x2+8x+14So, P+Q+R = 1 ................. (a)3P+5Q+7R = 8 ............ (b)2P+6Q+12R = 14i.e. P+3Q+6R = 7 ........ (c) 2007-02-01 21:31:33 補充: 6(a)-(c): 5P+3Q = -1 ............... (d)7(a)-(c): 4P+2Q = -1 ............... (e)(d)-(e): P+Q = 0 ...................... (f)(e)-2(f): 2P = -1 P = -0.5Put into (f): Q = -P = 0.5Put into (a): R = 1-P-Q = 1 2007-02-01 21:36:40 補充: Q.3(b)To solve: -2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=3x2+20x+29.Solution:From Q.3(a),-0.5(x+1)(x+2)+0.5(x+2)(x+3)+1(x+3)(x+4)≡x2+8x+14i.e. -2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)≡4x2+32x+56. 2007-02-01 21:36:55 補充: Now,-2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=3x2+20x+29i.e. 4x2+32x+56 = 3x2+20x+29i.e. x2+12x+27 = 0(x+3)(x+9) = 0x = -3 or x = -9. 2007-02-01 21:38:31 補充: 這裡有太多題目了,我覺得應該分開3個 threads 來問,這樣會更快得到正確答案。
其他解答:
P(x-1)(x-2)+Q(x-2)(x+1)+R(x+1)(x-1)≡4x^2 - 8x+6 Put x=2, L.H.S.=P(2-1)(2-2)+Q(2-2)(2+1)+R(2+1)(2-1)=3R R.H.S.=4*2^2 - 8*2+6=16-16+6=6 R=2 Put x =1, L.H.S.=P(1-1)(1-2)+Q(1-2)(1+1)+R(1+1)(1-1)=-2Q R.H.S.=4*1^2 - 8*1+6=4-8+6=2 Q=-1 Put x =-1, L.H.S.=P(-1-1)(-1-2)+Q(-1-2)(-1+1)+R(-1+1)(-1-1)=3P R.H.S.=4*(-1)^2 - 8*(-1)+6=4+8+6=18 P=6 A(x+1)^2 + B(x+1)(x-2)+C(x-2)^2≡15x-12 Put x=-1, L.H.S.=A(-1+1)^2 + B(-1+1)(-1-2)+C(-1-2)^2=9C R.H.S.=15(-1)-12=-15-12=-27 C=-3 Put x=2, L.H.S.=A(2+1)^2 + B(2+1)(2-2)+C(2-2)^2=9A R.H.S.=15*2-12=30-12=18 A=2 Put x=0, L.H.S.=A(0+1)^2 + B(0+1)(0-2)+C(0-2)^2=A-2B+4C=2-2B-12=-2B-10 R.H.S.=15*0-12=-12 B=1 P(x+1)(x+2)+Q(x+2)(x+3)+R(x+3)(x+4)≡x^2+8x+14 Put x=-3, L.H.S.=P(-3+1)(-3+2)+Q(-3+2)(-3+3)+R(-3+3)(-3+4)=2P R.H.S.=(-3)^2+8(-3)+14=9-24+14=-1 P=-0.5 Put x=-2, L.H.S.=P(-2+1)(-2+2)+Q(-2+2)(-2+3)+R(-2+3)(-2+4)=2R R.H.S.=(-2)^2+8(-2)+14=4-16+14=2 R=1 Put x=-1, L.H.S.=P(-1+1)(-1+2)+Q(-1+2)(-1+3)+R(-1+3)(-1+4)=2Q+6R=2Q+6 R.H.S.=(-1))^2+8(-1)+14=1-8+14=7 Q=0.5 (b)-2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=3x^2+20x+29 When we multiply (A) by 4,we have -2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=4x^2+32x+56 Therefore,3x^2+20x+29=4x^2+32x+56 -x^2-12x=-27 x=-3|||||Put x = -1, we have P(-1 - 1)(-1 - 2) ≡ 4 + 8 + 6 i.e. P = 3 Put x = 1, we have Q(1 + 1)(1 - 2) ≡ 4 - 8 + 6 i.e Q = -1 Put x = 2, we have R(2 + 1)(2 - 1) ≡ 4 * 2^2 - 8^2 + 6 R = 3 (N.B.: sometimes, putting some particular values of x into the identity to find unknowns constant will be much easier than expand the whole expansion.) ************************************************************************* So, for the 2nd questions, put x = -1 and 2 respectively, we get C (-1 - 2)^2 = 15(- 1) - 12 and A(2 + 1)^2 = 15(2) - 12 i.e. A = 2, C = - 3 Put x = 0, we have A - 2B + 4C = -12, B = 1 ************************************************************************** (A) Put x = -2, -3 respectively, we get R(-2 + 3)(-2 + 4)≡4 - 16+14 P(-3 + 1)(-3 + 2)≡9 - 24 + 14 So solving we have R = 1, P = -1/2 Hence, put x = 0, we have 2P + 6Q + 12R = 14, Q = 1/2 (B), using (A), we have -2(x+1)(x+2)+2(x+2)(x+3)+4(x+3)(x+4)=3x^2+20x+29 4 * [-1/2 * (x+1)(x+2)+1/2 * (x+2)(x+3) + (x+3)(x+4)]=3x^2+20x+29 4 *(x^2 + 8x + 14) = 3x^2 + 20x + 29 [Using (a) for LHS of the equation] x^2 + 12x + 27 = 0 (x + 3)(x + 9) = 0 x = -3 or -9